正在纳入数十种新工具和技术,以帮助开发人员,因为他们努力选择一种而不是其他人,这已成为震惊的根源。例如,开发人员至少有十个框架可用于开发Web应用程序,并在选择满足其需求的最佳框架时提出了一个难题。结果,开发人员正在不断搜索每个API,框架,工具等的所有好处和缺点。典型的方法之一是通过官方文档和讨论来检查所有功能。这种方法是耗时的,通常使难以确定哪些方面对特定开发人员最重要,以及特定方面对整个社区是否重要。在本文中,我们使用了从stackoverflow帖子中收集的基准API方面数据集(意见器),并观察了Transformer模型(Bert,Roberta,Distilbert和XLNet)在检测有关基线支持矢量的文本开发人员讨论中的软件方面时的表现机器(SVM)型号。通过广泛的实验,我们发现变压器模型改善了大多数方面的基线SVM的性能,即``performance'',``安全性'',``可用性'',``可用性'',``bug''',``bug''' '和``其他''。但是,这些模型未能理解某些方面(例如,“社区”和“陶器”),其性能取决于方面。同样,与Distilbert这样的较小体系结构相比,XLNET等较大的体系结构在解释软件方面无效。
translated by 谷歌翻译
大自然影响了许多元元素算法。在过去的几十年中,它们的数量一直在升级。这些算法中的大多数试图模仿自然的生物学和物理现象。这项研究集中在花授粉算法上,该算法是几种生物启发的算法之一。建议使用特定的全球授粉和局部授粉策略,建议在限制空间中进行花粉谷物探索和剥削。作为一种“群”元元素算法,其强度在于找到最佳解决方案的附近,而不是识别最小值。这项工作详细介绍了对原始方法的修改。这项研究发现,通过更改“开关概率”的特定值,具有不同尺寸和功能的动态值,结果主要比原始花授粉法改进。
translated by 谷歌翻译
在现代资本市场中,由于各种社会,财务,政治和其他动态因素,股票的价格通常被认为是高度波动和不可预测的。借助计算和周到的投资,股票市场可以通过最少的资本投资来确保可观的利润,而错误的预测可以轻松地为投资者带来灾难性的财务损失。本文介绍了最近引入的机器学习模型 - 变压器模型的应用,以预测孟加拉国领先的证券交易所达卡证券交易所(DSE)的未来价格。变压器模型已被广泛用于自然语言处理和计算机视觉任务,但据我们所知,从未在DSE进行股票价格预测任务。最近,介绍了代表时间序列功能的Time2VEC编码,使得可以采用变压器模型进行股票价格预测。本文集中于基于变压器的模型的应用,以根据其历史和每周的数据来预测DSE中列出的八个特定股票的价格转移。我们的实验证明了大多数股票的有希望的结果和可接受的根平方误差。
translated by 谷歌翻译
Diabetic Retinopathy (DR) is considered one of the primary concerns due to its effect on vision loss among most people with diabetes globally. The severity of DR is mostly comprehended manually by ophthalmologists from fundus photography-based retina images. This paper deals with an automated understanding of the severity stages of DR. In the literature, researchers have focused on this automation using traditional machine learning-based algorithms and convolutional architectures. However, the past works hardly focused on essential parts of the retinal image to improve the model performance. In this paper, we adopt transformer-based learning models to capture the crucial features of retinal images to understand DR severity better. We work with ensembling image transformers, where we adopt four models, namely ViT (Vision Transformer), BEiT (Bidirectional Encoder representation for image Transformer), CaiT (Class-Attention in Image Transformers), and DeiT (Data efficient image Transformers), to infer the degree of DR severity from fundus photographs. For experiments, we used the publicly available APTOS-2019 blindness detection dataset, where the performances of the transformer-based models were quite encouraging.
translated by 谷歌翻译
This paper presents our solutions for the MediaEval 2022 task on DisasterMM. The task is composed of two subtasks, namely (i) Relevance Classification of Twitter Posts (RCTP), and (ii) Location Extraction from Twitter Texts (LETT). The RCTP subtask aims at differentiating flood-related and non-relevant social posts while LETT is a Named Entity Recognition (NER) task and aims at the extraction of location information from the text. For RCTP, we proposed four different solutions based on BERT, RoBERTa, Distil BERT, and ALBERT obtaining an F1-score of 0.7934, 0.7970, 0.7613, and 0.7924, respectively. For LETT, we used three models namely BERT, RoBERTa, and Distil BERTA obtaining an F1-score of 0.6256, 0.6744, and 0.6723, respectively.
translated by 谷歌翻译
Objective: Despite numerous studies proposed for audio restoration in the literature, most of them focus on an isolated restoration problem such as denoising or dereverberation, ignoring other artifacts. Moreover, assuming a noisy or reverberant environment with limited number of fixed signal-to-distortion ratio (SDR) levels is a common practice. However, real-world audio is often corrupted by a blend of artifacts such as reverberation, sensor noise, and background audio mixture with varying types, severities, and duration. In this study, we propose a novel approach for blind restoration of real-world audio signals by Operational Generative Adversarial Networks (Op-GANs) with temporal and spectral objective metrics to enhance the quality of restored audio signal regardless of the type and severity of each artifact corrupting it. Methods: 1D Operational-GANs are used with generative neuron model optimized for blind restoration of any corrupted audio signal. Results: The proposed approach has been evaluated extensively over the benchmark TIMIT-RAR (speech) and GTZAN-RAR (non-speech) datasets corrupted with a random blend of artifacts each with a random severity to mimic real-world audio signals. Average SDR improvements of over 7.2 dB and 4.9 dB are achieved, respectively, which are substantial when compared with the baseline methods. Significance: This is a pioneer study in blind audio restoration with the unique capability of direct (time-domain) restoration of real-world audio whilst achieving an unprecedented level of performance for a wide SDR range and artifact types. Conclusion: 1D Op-GANs can achieve robust and computationally effective real-world audio restoration with significantly improved performance. The source codes and the generated real-world audio datasets are shared publicly with the research community in a dedicated GitHub repository1.
translated by 谷歌翻译
Uncertainty quantification is crucial to inverse problems, as it could provide decision-makers with valuable information about the inversion results. For example, seismic inversion is a notoriously ill-posed inverse problem due to the band-limited and noisy nature of seismic data. It is therefore of paramount importance to quantify the uncertainties associated to the inversion process to ease the subsequent interpretation and decision making processes. Within this framework of reference, sampling from a target posterior provides a fundamental approach to quantifying the uncertainty in seismic inversion. However, selecting appropriate prior information in a probabilistic inversion is crucial, yet non-trivial, as it influences the ability of a sampling-based inference in providing geological realism in the posterior samples. To overcome such limitations, we present a regularized variational inference framework that performs posterior inference by implicitly regularizing the Kullback-Leibler divergence loss with a CNN-based denoiser by means of the Plug-and-Play methods. We call this new algorithm Plug-and-Play Stein Variational Gradient Descent (PnP-SVGD) and demonstrate its ability in producing high-resolution, trustworthy samples representative of the subsurface structures, which we argue could be used for post-inference tasks such as reservoir modelling and history matching. To validate the proposed method, numerical tests are performed on both synthetic and field post-stack seismic data.
translated by 谷歌翻译
In recent years distributional reinforcement learning has produced many state of the art results. Increasingly sample efficient Distributional algorithms for the discrete action domain have been developed over time that vary primarily in the way they parameterize their approximations of value distributions, and how they quantify the differences between those distributions. In this work we transfer three of the most well-known and successful of those algorithms (QR-DQN, IQN and FQF) to the continuous action domain by extending two powerful actor-critic algorithms (TD3 and SAC) with distributional critics. We investigate whether the relative performance of the methods for the discrete action space translates to the continuous case. To that end we compare them empirically on the pybullet implementations of a set of continuous control tasks. Our results indicate qualitative invariance regarding the number and placement of distributional atoms in the deterministic, continuous action setting.
translated by 谷歌翻译
Automated synthesis of histology images has several potential applications in computational pathology. However, no existing method can generate realistic tissue images with a bespoke cellular layout or user-defined histology parameters. In this work, we propose a novel framework called SynCLay (Synthesis from Cellular Layouts) that can construct realistic and high-quality histology images from user-defined cellular layouts along with annotated cellular boundaries. Tissue image generation based on bespoke cellular layouts through the proposed framework allows users to generate different histological patterns from arbitrary topological arrangement of different types of cells. SynCLay generated synthetic images can be helpful in studying the role of different types of cells present in the tumor microenvironmet. Additionally, they can assist in balancing the distribution of cellular counts in tissue images for designing accurate cellular composition predictors by minimizing the effects of data imbalance. We train SynCLay in an adversarial manner and integrate a nuclear segmentation and classification model in its training to refine nuclear structures and generate nuclear masks in conjunction with synthetic images. During inference, we combine the model with another parametric model for generating colon images and associated cellular counts as annotations given the grade of differentiation and cell densities of different cells. We assess the generated images quantitatively and report on feedback from trained pathologists who assigned realism scores to a set of images generated by the framework. The average realism score across all pathologists for synthetic images was as high as that for the real images. We also show that augmenting limited real data with the synthetic data generated by our framework can significantly boost prediction performance of the cellular composition prediction task.
translated by 谷歌翻译
Autonomous mobile agents such as unmanned aerial vehicles (UAVs) and mobile robots have shown huge potential for improving human productivity. These mobile agents require low power/energy consumption to have a long lifespan since they are usually powered by batteries. These agents also need to adapt to changing/dynamic environments, especially when deployed in far or dangerous locations, thus requiring efficient online learning capabilities. These requirements can be fulfilled by employing Spiking Neural Networks (SNNs) since SNNs offer low power/energy consumption due to sparse computations and efficient online learning due to bio-inspired learning mechanisms. However, a methodology is still required to employ appropriate SNN models on autonomous mobile agents. Towards this, we propose a Mantis methodology to systematically employ SNNs on autonomous mobile agents to enable energy-efficient processing and adaptive capabilities in dynamic environments. The key ideas of our Mantis include the optimization of SNN operations, the employment of a bio-plausible online learning mechanism, and the SNN model selection. The experimental results demonstrate that our methodology maintains high accuracy with a significantly smaller memory footprint and energy consumption (i.e., 3.32x memory reduction and 2.9x energy saving for an SNN model with 8-bit weights) compared to the baseline network with 32-bit weights. In this manner, our Mantis enables the employment of SNNs for resource- and energy-constrained mobile agents.
translated by 谷歌翻译